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Abstract

The present study applies a hybrid numerical method to investigate the effect of a potential field on one-dimensional

non-Fickian diffusion problems in a sphere. This hybrid numerical scheme involves the Laplace transform technique

and the control volume method in conjunction with the suitable hyperbolic shape functions. The Laplace transform

method is used to remove the time-dependent terms in the governing differential equation and boundary conditions, and

then the transformed equations are discretized by the control volume scheme. It is worth noting that the boundary

condition at r ¼ 0 should be carefully established for the present problems to determine an accurate numerical result.
To evidence the accuracy of the present numerical method, a comparison of the mass concentration distribution be-

tween the present numerical results and the analytic solutions is made for the potential gradient dV =dr ¼ 0. The results
show that the present numerical results agree well with the analytic solutions and do not exhibit numerical oscillations

in the vicinity of the jump discontinuity for various potential values. The important findings are that dV =dr has a great
effect on the mass concentration distribution, and the strength of the jump discontinuity can decrease with increasing

the value of the dimensionless potential gradient.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many studies for mass diffusion are conducted by

using the traditional Fickian diffusion model. This model

can give good approximations for most engineering ap-

plications [1–3]. The traditional Fickian diffusion equa-

tion belongs to the diffusion equation of the parabolic

type. It is well known that the solution obtained from this

traditional model exhibits an infinitely fast propagation

of the mass signal. This concept can be unrealistic from a

physical point of view. On the other hand, this tradi-

tional model may break down for the short-time inertial

motion because the mass transport can have a phenom-

enon of the wave-like propagation [4–6]. Thus the non-

Fickian diffusion equation (NFDE) that describes the

mass diffusion with a finite speed of propagation is pos-

tulated. Das [5,6] has derived a NFDE in the presence of

a potential field from the Kramers equation which de-

scribes the dynamics of a Brownian particle at a micro-

scopic level. This equation can yield one physical

quantity which retains the full short-time behavior, and

is referred as the partial differential equation of the hy-

perbolic type. On the whole, the properties of the hy-

perbolic diffusion in heat transfer have received more

attention than in mass transfer. Because the experimental

techniques of studying short-time dynamics were inno-

vated, the non-Fickian equation may be applied to the

physical systems of practical interest, such as superionic

conductors, molten salts, and neutron diffusion in nu-

clear reactors. The NFDE in the absence of potential

field could be referred to as the hyperbolic heat con-

duction equation [7–13]. It can be found from our pre-

vious works [14,15] show that the potential field plays an

important role in the non-Fickian diffusion problems.

Various numerical methods have been proposed for

solving the hyperbolic heat conduction problems [7–12].
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It can be observed from these previous works [7–12]

that the major difficulty encountered in the numerical

solution of the hyperbolic heat conduction problems is

numerical oscillations in the vicinity of sharp disconti-

nuities. Zhang and Liu [13] determined the analytical

solution of the rapid transient heat conduction problem

with non-Fourier effects in a solid sphere. Due to the

existence of the potential field, the non-Fickian diffusion

problems are more difficult to be solved than the hy-

perbolic heat conduction problems. Chen and Liu

[14,15] have proposed a hybrid application of the La-

place transform technique and the control volume for-

mulation in conjunction with the hyperbolic shape

functions to solve the non-Fickian diffusion problems in

the rectangular coordinate system. Because of the in-

herent nature of spherical problems, there exists a sin-

gular point at r ¼ 0 in the present problems. Thus it is
more difficult to be solved for the present problems than

that in the rectangular coordinate system. The purposes

of the present study are to develop a numerical method

for the non-Fickian diffusion problems in the spherical

coordinate system and are to investigate the effect of a

potential field on the mass concentration distribution.

2. Mathematical formulation

The one-dimensional mass transfer in a sphere of

radius R governed by the balance equation can be ex-
pressed as

oC�

ot
þ oJ �

or
þ 2

r
J � ¼ 0 in 06 r6R; t > 0 ð1Þ

where J � is the mass flux, C� is the mass concentration, t
is time, and r denotes the radial coordinate.

To accommodate the assumption of a local Max-

wellian equilibrium, the generalized Fick�s law from the
Kramers equation can be written as [5,6]

J � ¼ � 1
c
oJ �

ot
� D

oC�

or
� dV
dr

C�

mc
ð2Þ

or

J � ¼ �s
oJ �

ot
� D

oC�

or
� s

dV
dr

C�

m
ð3Þ

where c can be regarded as a friction parameter with the
dimension of inverse time, m is the particle mass, V ðrÞ is
the potential field, and s ¼ 1=c is the relaxation time of
the mass flux. D ¼ kBT s=m is the diffusion coefficient and
is assumed constant in the present study. T is the tem-
perature. kB is the Boltzmann constant.
For convenience of the numerical analysis, the fol-

lowing dimensionless parameters are introduced as

C ¼ C�

C0
; g ¼ rffiffiffiffiffiffi

Ds
p ; J ¼ J �

C0
ffiffiffiffiffiffiffiffi
D=s

p ; and n ¼ t=s

ð4Þ

where C0 is the reference mass concentration. The short
time domain n � 1 can be regarded as an interval in

which the particle has not suffered many collisions and

retains an inertial property. For the long time domain

n 	 1, the particle�s dynamics loses its inertial property
and becomes collision-dominated [6]. On the other hand,

the NFDE describes a wave-like behavior at the short

time n6 1 and a diffusive behavior at the long time
n > 1.
Introducing these dimensionless variables in Eq. (4)

into Eqs. (1) and (2) leads to the following dimensionless

forms as

Nomenclature

C dimensionless mass concentration, C�=C0
C0 reference mass concentration

C� mass concentrationeCC Laplace transform of C
D diffusion coefficient, kBT s=m
J � mass flux

J dimensionless mass flux, J �=ðC0
ffiffiffiffiffiffiffiffi
D=s

p
Þ

kB Boltzmann constant

‘ dimensionless distance between two neigh-

boring nodes

m particle mass

P dimensionless potential gradient, ð�dV =drÞ=
ðm

ffiffiffiffiffiffiffiffiffiffi
D=s3

p
Þ

R radius of a sphere

r radial coordinate

s Laplace transform parameter

T temperature

t time

U dependent variable, gC
V potential field

VD propagation speed of mass wave, ðD=sÞ1=2

Greek symbols

g dimensionless space variable, r=
ffiffiffiffiffiffi
Ds

p

c friction parameter

k parameter, ðs2 þ sÞ1=2
s relaxation time, 1=c
n dimensionless time, t=s
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oC
on

þ oJ
og

þ 2
g
J ¼ 0 ð5Þ

and

J ¼ � oJ
on

� oC
og

þ PC ð6Þ

where P ¼ ð1=ðm
ffiffiffiffiffiffiffiffiffiffi
D=s3

p
ÞÞ � dV

dr

� �
is defined as the di-

mensionless potential gradient. Das stated [6] that the

term ‘‘�dV ðrÞ=dr’’ can be regarded as a drift force. Thus
the dimensionless potential gradient P can be regarded
as the ratio between the drift force and the short-time

inertial force.

Elimination of the dimensionless mass flux J from
Eqs. (5) and (6) leads to a dimensionless description of

NFDE with a potential field in a sphere as

oC
on

þ o2C

on2
¼ 1

g2
o

og
g2

oC
og

� �
� 1

g2
o

og
ðg2PCÞ ð7aÞ

or

oC
on

þ o2C

on2
¼ 2

g
oC
og

�
� PC

�
� o

og
ðPCÞ þ o2C

og2
ð7bÞ

It can be observed that a potential field term is included

in Eq. (7a). If the inertial term o2C=on2 is neglected, Eq.
(7a) will become the classical diffusion equation in the

presence of a potential field. However, Eq. (7a) will

become the type of the hyperbolic heat conduction

equation provided that the potential field is absent, i.e.

P ¼ 0. Thus the short-time behavior of the mass diffu-
sion can be expected for such problems. Numerical so-

lutions of Eq. (7a) for P ¼ 0 can be easily determined
from the work of Lin and Chen [9]. To the best of the

authors� knowledge, there is no report of such a study in
the open literature and ð1=g2Þðo=ogÞðg2PCÞ 6¼ 0. The
second term on the right-hand side of Eq. (7a) can be

regarded as the drift term due to the existence of the

potential field V ðrÞ [6].
Special consideration must be given to the central

node at g ¼ 0 because this node is a singular point for
the present problems. On the other hand, the first term

on the right-hand side of Eq. (7b), ð2=gÞðoC=og � PCÞ,
at g ¼ 0 is indeterminate. However, the present problems
subject to this condition that the mass concentration

remains finite at g ¼ 0. Thus the boundary condition at
g ¼ 0 should be given as

oC
og

� PC ¼ 0 at g ¼ 0 ð8Þ

An interesting finding from Eqs. (6) and (8) is that the

mass flux at r ¼ 0 can be regarded as zero.
In all examples of this paper, the initial conditions

are given as

Cð0; gÞ ¼ 0 and
oCð0; gÞ

on
¼ 0 ð9Þ

Various types of the boundary conditions will be dis-

cussed in the following examples.

3. Numerical analysis

To determine the present results easily, the transfor-

mation of the dependent variable is applied to transform

the present problem into a problem in the rectangular

coordinate system [16]. This new dependent variable

Uðg; nÞ is defined as
U ¼ gC ð10Þ

Due to the introduction of Eq. (10), Eq. (7a) can be

rewritten as

oU
on

þ o2U
o2n

¼ o2U
og2

� 1
g

o

og
ðgPUÞ ð11Þ

It is obvious that the node at g ¼ 0 also is a singular
point for Eq. (11). On the other hand, the second term

on the right-hand side of Eq. (11), ð1=gÞ½oðgPUÞ=og�, at
g ¼ 0 is indeterminate. However, the Uðg; nÞ value re-
mains finite at g ¼ 0. Thus the boundary condition at
g ¼ 0 for Eq. (11) should be given as

o

og
ðgPUÞ ¼ 0 at g ¼ 0 ð12Þ

But, the boundary condition at g ¼ 0 for Eq. (11) can be
also obtained from the definition of Uðg; nÞ shown in
Eq. (10) as

Uðg; nÞ ¼ 0 at g ¼ 0 ð13Þ

An interesting observation is that the boundary condi-

tion (13) coincides with Eqs. (8) and (12).

The Laplace transform technique is applied to re-

move the n-dependent terms in Eq. (11). The Laplace
transform of Eq. (11) with respect to n is

d2 eUU
dg2

� k2 eUU � 1
g
d

dg
ðgP eUU Þ ¼ 0 ð14Þ

where k is defined as k ¼ ðs2 þ sÞ1=2 for the NFDE and
k ¼ s1=2 for the Fickian diffusion equation (FDE). The
Laplace transform parameter s is a complex variable. eUU
is the Laplace transform of the dependent variable

Uðg; nÞ and is defined as

eUU ðg; sÞ ¼
Z 1

0

e�snUðg; nÞdn ð15Þ

Subsequently, Eq. (14) is discretized by using a control

volume formulation. Integration of Eq. (14) within the

ith control volume ½gi � ‘=2; gi þ ‘=2� gives
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Z giþ‘=2

gi�‘=2

d2 eUU
dg2

"
� k2 eUU � 1

g
d

dg
ðgP eUU Þ

#
gdg ¼ 0 ð16Þ

where ‘ denotes the distance between two neighboring
nodes and is uniform in the present study.

Before performing the integration of Eq. (16), eUU will

be approximated by using the nodal values and the

shape functions within the ith control volume ½gi � ‘=2;
gi þ ‘=2�. The shape functions in the transform domain

can be arbitrarily chosen for the parabolic diffusion

problems. But they must be carefully chosen for the

hyperbolic diffusion problems in order to determine a

more accurate result. The works of Chen and Lin [8–10]

and Chen Liu [14,15] showed that the selection of the

shape functions in the control volume formulation is an

important step for accurately determining the required

results. Poor selection of the shape functions may pro-

duce severe numerical oscillations in the vicinity of jump

discontinuities. The previous works [8–10,14,15] also

showed that the hyperbolic shape functions derived

from the associated homogeneous differential equation

in the transform domain can be successfully applied to

suppress numerical oscillations. Thus the shape func-

tions for the present study are obtained from the fol-

lowing homogeneous differential equation.

d2 eUU
dg2

� k2 eUU ¼ 0 for gi 6 g6 giþ1 and

i ¼ 1; 2; . . . ; n� 1 ð17Þ

The following simple notations must be used:eUU ðgiÞ ¼ eUUi and eUU ðgiþ1Þ ¼ eUUiþ1 ð18Þ

The analytical solution of Eq. (17) in the interval

½gi; giþ1� with the boundary condition (18) is

eUU ðgÞ ¼ N1ðgiþ1Þ eUUi þ N2ðgiÞ eUUiþ1 ð19Þ

where N1ðzÞ and N2ðzÞ are denoted as the hyperbolic
shape functions and are given by

N1ðzÞ ¼
sinh½kðz� gÞ�
sinhðk‘Þ and

N2ðzÞ ¼
sinh½kðg � zÞ�
sinhðk‘Þ ð20Þ

Similarly, the analytical solution of Eq. (17) in the in-

terval ½gi�1; gi� iseUU ðgÞ ¼ N1ðgiÞ eUUi�1 þ N2ðgi�1Þ eUUi ð21Þ

Substituting the approximation for eUU shown in Eqs.

(19) and (21) into Eq. (16) and then evaluating the re-

sulting integral can produce the following discretized

form as

Bi�1 eUUi�1 þ Bi
eUUi þ Biþ1 eUUiþ1 ¼ 0;

i ¼ 2; 3; . . . ; n� 1 ð22Þ

where the coefficients Bi�1, Bi, and Biþ1 are given as

Bi�1 ¼ gi þ ðgi � ‘=2ÞPi�1=2
sinhðk‘=2Þ

k
ð23aÞ

Bi ¼ �2gi coshðk‘Þ � ½ðgi þ ‘=2ÞPiþ1=2

� ðgi � ‘=2ÞPi�1=2�
sinhðk‘=2Þ

k
ð23bÞ

Biþ1 ¼ gi � ðgi þ ‘=2ÞPiþ1=2
sinhðk‘=2Þ

k
ð23cÞ

In Eqs. (23a) and (23b), Pi�1=2 and Piþ1=2 denote

P ðgi � ‘=2Þ and P ðgi þ ‘=2Þ, respectively.
Rearrangements of Eq. (22) in conjunction with the

discretized forms of the boundary conditions yield the

following matrix equations as

½B�½ eUU � ¼ ½F � ð24Þ

where ½B� is a band-matrix with the Laplace transform
parameter s, ½ eUU � is a matrix representing the unknown
nodal values in the transform domain, and ½F � is a ma-
trix representing the forcing term. The application of the

Gaussian elimination algorithm and the numerical in-

version of the Laplace transform [17,18] to Eq. (24) can

yield the value of U in the physical domain [19,20].

The value of U=g at g ¼ 0 in Eq. (10) is indeterminate
and must be replaced by its limit as g ! 0 (or r ! 0).

Thus the Cð0; nÞ value can be evaluated by using

L�Hôospital�s rule as

Cðg; nÞ ¼ lim
g!0

U
g
¼ dU
dg

at g ¼ 0 ð25Þ

4. Results and discussion

To investigate the effect of a potential field on the

mass concentration distribution of non-Fickian diffu-

sion, various potential fields are illustrated. All the

computations are performed with the uniform space size

(‘ ¼ 0:01).

4.1. Example 1: Constant P and constant surface

concentration

The first example considers a problem in solid a

sphere of the dimensionless radius g ¼ 1 with the di-
mensionless boundary condition as

Cð1; nÞ ¼ 1 ð26Þ

Thus the analytical solution of Cðg; nÞ for the solid
sphere with P ¼ 0 can be determined as
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Cðg; nÞ ¼ L�1 sinhðkgÞ
g sinhðkÞs

� �
ð27Þ

Thus the Cð0; nÞ value for P ¼ 0 can be evaluated by
using L�Hôospital�s rule as

Cð0; nÞ ¼ lim
g!0

Cðg; nÞ ¼ L�1 k
sinhðkÞs

� �
ð28Þ

Zhang and Liu [13] has determined the analytical solu-

tion of Cðg; nÞ for P ¼ 0, as shown in Eq. (27). In order
to show the accuracy of the present numerical method,

the comparison of the dimensionless mass concentration

distribution Cðg; nÞ between the present numerical re-
sults and the analytical solution for P ¼ 0 at various n
values is shown in Fig. 1. It can be seen that the present

numerical results agree well with the analytical solutions

and do not exhibit severe numerical oscillations in the

vicinity of the jump discontinuity. In general, the major

difficulty in the numerical solution of the hyperbolic

diffusion problem is numerical oscillations in the vicinity

of the jump discontinuity [8–12].

Fig. 2(a) and 2(b) respectively show the distributions

of the dimensionless mass concentration Cðg; nÞ at
n ¼ 0:9 for various P values. It can be seen that the

present numerical results do not exhibit severe oscilla-

tions in the neighborhood of the jump discontinuity for

various P values. This implies that the present numerical
scheme can successfully suppress these numerical oscil-

lations. On the other hand, the present numerical

method should have good accuracy for such problems.

It can be observed from Figs. 1 and 2 that the loca-

tion of the jump discontinuity at a specific dimensionless

time is the same for various P values. These results show

that the mass wave propagates in a similar manner for

the rectangular and spherical coordinate systems [9].

This phenomenon can be explained from the definition

of the propagation speed of the mass wave VD that can
be defined as VD ¼ ðD=sÞ1=2. This implies that the
propagation speed is independent of the geometry and

the potential gradient and depends only on the mass

diffusivity D and the relaxation time s. Thus the position
of the mass wave front is the depth of the mass wave

penetrating into the substance and is equal to tVD. The
mass wave induced by the boundary condition at g ¼ 1
has not yet reached the center at n < 1:0 for various PðgÞ
values. Under this circumstance, this case can be re-

garded as a semi-infinite problem. This implies that the

boundary condition at g ¼ 0 can be written as

Cð0; nÞ ¼ 0 and oCð0; nÞ=og ¼ 0 at n < 1:0. It is found

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2
Analytical solution
Present result
P= 0

ξ=2.3

ξ=0.5

ξ =1.8

ξ=10.0

η

C

Fig. 1. Comparison of Cðg; nÞ between the analytical solutions
and present results at various n values for P ¼ 0.

0 0.2 0.4 0.6 0.8 1
-0.4

0

0.4

0.8

1.2

1.6

P=3.0 P=5.0

P=7.0 P=11.0

C

η

ξ= 0.9

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

24

28

32

36

C

η

P =-4.0

P=-3.0

P=0.0

ξ= 0.9

(a)

(b)

Fig. 2. Profiles of Cðg; 0:9Þ for Cð1; nÞ ¼ 1:0 and various P
values: (a) P > 0 and (b) P 6 0.
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that these conditions also satisfy the boundary condition

shown in Eq. (8).

It can be observed from Fig. 2 that the effect of PðgÞ
on the dimensionless mass concentration Cðg; nÞ is very
great at a specific n value and the strength of the jump
discontinuity reduces with increasing the P value. On the
other hand, this strength of the jump discontinuity or

the peak value of the mass concentration seems to in-

crease with decreasing the P value. The similar phe-

nomena can be found from our previous works [14,15].

In accordance with the definition of P ðgÞ, the above
result implies that the potential gradient dV =dr or the
curve of V ðrÞ has a great effect on the mass concentra-
tion distribution. Another feature of a NFDE is that the

solution of the mass concentration be generally non-

negative. However, it can be found that Cðg; nÞ at
n ¼ 0:9 can exhibit the non-positive values for P < 7:0.
Fig. 3 shows the history of the dimensionless mass

concentration Cðg; nÞ at g ¼ 0:7 for P ðgÞ ¼ �2:0 and
2.0. This figure exhibits the wave-like behavior. How-

ever, this wavy behavior obviously dissipates with time.

Fig. 4(a) and (b) show the profiles of Cðg; nÞ at var-
ious n values for P ðgÞ ¼ �2:0 and 2.0. It can be seen that
there exists no numerical oscillation in the vicinity of the

jump discontinuity. At the same time, Figs. 1 and 4 also

show that, at n ¼ 0:5, the mass wave induced by the
outer boundary condition only reaches the location

g ¼ 0:5 and has not yet reached the center for

PðgÞ ¼ �2, 0, and 2. On the other hand, the region,
0:06 g < 0:5, is not yet affected by the boundary con-
dition at g ¼ 1. Afterward, the reflected mass wave in-
teracts with the original mass wave at n ¼ 1:8 and 2.3. It
is interesting that a superposition of the reflected and

original waves results in the occurrence of the peak value

in the middle region of the domain at n ¼ 1:8 and 2.3.
However, the profile of Cðg; nÞ at n ¼ 10 does not reveal
the phenomenon of the jump discontinuity and is the

same as that obtained from the FDE. This implies that

the non-Fickian effects are significant only for very short

times and dissipate with time. The foregoing results

show that the profiles of Cðg; nÞ for the non-Fickian
diffusion problems reveal a wave-like behavior at the

short time n6 1 and a diffusive behavior at the long time
n > 1. This also implies that the non-Fickian effects are
significant only for very short times and dissipate with

time. Though these are physically doubtful results, they

are admitted for the wave propagation concept. These

doubtful solutions can be only evidenced through fur-

ther experiments whether they are accurate or not.

0 1 2 3 4 5 6 7
-1

0

1

2

3

4

P= -2

P= 2

η= 0.7

C

ξ
Fig. 3. History of Cð0:7; nÞ for Cð1; nÞ ¼ 1:0 with respect to
PðgÞ ¼ �2:0 and 2.0.
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0

0.2
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Fig. 4. Profiles of Cðg; nÞ at various n values for Cð1; nÞ ¼ 1:0:
(a) P ðgÞ ¼ �2:0 and (b) PðgÞ ¼ 2:0.
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4.2. Example 2: Constant P and time-dependent surface

concentration

This illustrative problem concerns one case of prac-

tical interest that the surface concentration at g ¼ 1
varies exponentially with the dimensionless time and

approaches an equilibrium concentration. Obviously,

the surface concentration is changed rapidly but not

instantaneously. The dimensionless boundary condition

at g ¼ 1 can be written as
Cð1; nÞ ¼ 1� expð�nÞ ð29Þ

Fig. 5(a) and (b) show a comparison of the dimen-

sionless mass concentration Cðg; nÞ between the hyper-

bolic model and the parabolic model at various n values
for P ¼ �2 and 2, respectively. It can be found that the
difference between them is great for short time. This

difference can result from the non-Fickian effect. An

interesting observation is that the value of Cðg; nÞ for the
parabolic model is greater than that for the hyperbolic

model at n ¼ 0:5. However, the value of Cðg; nÞ for the
parabolic model is less than that for the hyperbolic

model at n ¼ 1:8. These results also show that the non-
Fickian effect is significant only for short time and

quickly dissipates with time. An interesting observation

is that the profile of Cðg; nÞ at n ¼ 1:8 is nearly smooth
for P ¼ �2. However, there exists a discontinuous point
for P ¼ 2.
Fig. 6 shows a comparison between the hyperbolic

model and the parabolic model at n ¼ 0:9 for various P
value. The deviation of Cðg; nÞ between the hyperbolic
model and parabolic model is great for P 6 0 and de-

creases with increasing the P value. An interesting ob-
servation is that the jump discontinuity in the previous

figures disappears for the present case. This implies that

the jump discontinuity in the solution of NFDE can be

suppressed by the boundary condition with the feature

of the rapid variation. However, the location of the mass

wave front is still equal to tVD and is independent of the
potential gradient and the types of boundary conditions.

4.3. Example 3: Non-constant P ðgÞ

The last example investigates the effect of the slowly

and rapidly varying P ðgÞ on the dimensionless mass
concentration Cðg; nÞ calculated from the NFDE. Two
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C
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Fig. 5. Comparison of Cðg; nÞ between the hyperbolic model
and parabolic model at various n values for Cð1; nÞ ¼
1� expð�nÞ: (a) P ¼ �2:0 and (b) P ¼ 2:0.
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different functional forms of P ðgÞ, such as P ðgÞ ¼ �2g
and PðgÞ ¼ �2 expð�gÞ, will be illustrated. The bound-
ary conditions (26) and (29) are respectively applied to

determine the numerical results shown in Figs. 7–10.

Figs. 7 and 8 respectively show the profiles of Cðg; nÞ
at various n values for the boundary condition Cð1; nÞ ¼
1, as shown in Eq. (26), corresponding to P ðgÞ ¼ �2g
and PðgÞ ¼ �2 expð�gÞ. Similarly, it can be observed
from Figs. 3, 7 and 8 that the location of the jump

discontinuity at n ¼ 0:5 for a non-constant P ðgÞ is the
same as that for a constant PðgÞ. This result further
shows that the position of the mass wave front is inde-

pendent of the functional form of the potential gradient.

In other words, the propagation speed of the mass wave

depends only on D and s. As shown in Figs. 3, 7 and 8,
the deviation of Cðg; nÞ between a constant P ðgÞ and

non-constant PðgÞ, such as P ðgÞ ¼ �2g and P ðgÞ ¼
�2 expð�gÞ, is very great at various n values. These
figures indicate that the rapidly varying PðgÞ has a sig-
nificant effect on the profile of Cðg; nÞ for various n
values. These results evidence that the NFDE is very

sensitive to the functional form of the dimensionless

potential gradient PðgÞ. The similar result can be also
found from Refs. [14,15].

The wave behavior shown in Figs. 7 and 8 is similar

to that shown in Example 1 for the constant P ðgÞ under
the same boundary conditions. The mass wave reaches

the reflecting boundary surface at n ¼ 1. Afterward, the
reflected mass wave interacts with the original mass

wave at n ¼ 1:8 and 2.3. Due to a superposition of the
reflected and original mass waves, the peak value of

the mass concentration occurs in the middle region of
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Fig. 7. Profiles of Cðg; nÞ at various n values for Cð1; nÞ ¼ 1:0:
(a) PðgÞ ¼ �2g and (b) P ðgÞ ¼ 2g.
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Fig. 8. Profiles of Cðg; nÞ at various n values for Cð1; nÞ ¼ 1:0:
(a) P ðgÞ ¼ �2 expð�gÞ and (b) P ðgÞ ¼ 2 expð�gÞ.
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the domain at n ¼ 1:8 and 2.3. The profile of Cðg; nÞ at
n ¼ 10 is essentially the same as that obtained from the
FDE. Similarly, these results also imply that the non-

Fickian effects will dissipate with time.

Figs. 9 and 10 show the profiles of the dimensionless

concentration distributions Cðg; nÞ at various n values
for the boundary condition Cð1; nÞ ¼ 1� expð�nÞ, as
shown in Eq. (29), corresponding to P ðgÞ ¼ 2g and

2 expð�gÞ. As shown in Figs. 3, 7 and 8, the deviation of
Cðg; nÞ between a constant PðgÞ and non-constant P ðgÞ,
such as P ðgÞ ¼ �2g and P ðgÞ ¼ �2 expð�gÞ, is very

great at various n values. An interesting observation
from these two figures is that there exists the discon-

tinuous point for the profile of Cðg; nÞ at n ¼ 1:8 and
2.3. In addition, Figs. 5, 9, and 10 also show that the

functional form of PðgÞ has a significant effect on the
profile of Cðg; nÞ.

5. Conclusion

The present study applies a hybrid numerical method

involving the Laplace transform technique and the

control-volume method in conjunction with the hyper-

bolic shape functions to investigate the non-Fickian

diffusion problems in the presence of a potential field in

a solid sphere. Various illustrated examples show that

the present numerical method can accurately determine

the profile of the dimensionless mass concentration

without any numerical oscillation around the jump dis-

continuity for various functional forms of the dimen-

sionless potential gradient P ðgÞ. The present results
show that the non-Fickian effect is significant only for

short time and quickly dissipates with time. The phe-

nomenon of the jump discontinuity can be suppressed

by the boundary condition. The speed of propagation of

mass signal is independent of the functional form of PðgÞ
and the types of boundary conditions. An important

result is that the rapidly varying P ðgÞ has a significant
effect on the profile of Cðg; nÞ corresponding to various n
values.
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